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INTRODUCTION

In many design-critical regions in plate structures, such as those involving highly stressed
areas near holes, cutouts and impact, bolted and adhesive joints, etc., deformations due to
transverse shear and transverse normal strains and stiesses can significantly contribute to the
three-dimensional stress state. These effects arc especially pronounced in composite laminates
that arc inherently compliant in the transverse shear and transverse normal modes of deforma-
tion. To adequately model such critical plate regions with finite elements, three-dimensional
clements are commonly used, usually at a very high computational cost.  Alternatively, from
the standnoint of computational efficiency, and in order to avoid or minimize costly sub-
structuring with three-dimensional clements, it would be most desirable to discretize with accu-
rate plate clements that incorporate all strain and stress effects.

Many effective plate finite clements developed to date cvolved from a shear-deformable
displacement theory originally derived for homogencous isotropic plates by Mindiin.!  The the-
ory lends itself to the development of simple and efficient elements by virtuc of the inhercent
ce. continuity prescribed for the approximation of the plate displacement variables. An carlicr
plate theory of Reissner” ** is based on stress approximations including the transverse normaul
stress component (which is ncgiccted in the Mindlin theory) and is somewhat more accurate
as far as the stresses are concerncd. Both of the Mindlin and Reissner theories rely upon
weighted-average displacement variables which constitute linear variations across the thickness
tor the inplanc displacements and a uniform transverse displacement. From a perspective of
composite laminate analysis, the displacement-based theories are gencrally preferred. allowing
for discontinuous normal stresses which occur naturally in composite laminates (c¢.g., refer to
Reterence 5).

In recent years, several higher-order shear deformable displacement plate thcories have
been introduced (e.g., see Refecrences 6 and 7), in which the inplanc displacements vary cubi-
cally across the plate thickness while the transverse displaccment is uniform. While these the-
ories appear (o have a wider applicability range than their predeccssors -5 thcy possess a
scrious drawback from the finite clement standpoint, the requirement of C' continuity which
is known to inhibit devclopment of simple and etficient elements (e¢.g.. scc discussions in
Reference 8).

Higher-order plate theories,” ! which in addition to transverse shear also include the
cffeet of transverse normal straining. are intended to extend the range of applicability o
design-critical situations such as those mentioned carlier.  The interested reader may tind
mswhtful reviews of many notable higher-order theories in the papers by Lo, Christensen. and
Wu' and Reissner.!” Regrettably, these theories are rather unattractive tmm the linite cle-
ment viewpoint for the following reasons: (i) an excessively large number of plate displace-
ment variables (e.g., Lo ct al's theory' 15 possesses 11 kinematic variables for the problem of
bending and stretching, whercas the Reissner and Mindlin theories involve only five such vari-
ables). (ii) natural edge-boundary Londluons that include nonclassical quantities such as highcer-
order force and moment resultanis’ !> (in addition to the physically mcaningful Poisson
conditions including threc prescribed cdge forces, bending, and twisting moments), (iif) a lack
of variational basis,'® and (iv) a departure [rom the kincmatically admissible evaluation of
stress: ' Q. evaluation of stress components from equilibrium equanons rather than (in a kine-
matically admissible manncr) from constitutive rclations.
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The present development of a higher-order plate theory, incorporating all stress and strain
effects, is motivated by linite clement application, where a variational formulation is desired
requiring, at most. C’-coniinuous displacement fields with the least number of variables, and
relying exclusively upon Poisson-type boundary conditions.

In the Kinematic Assumptions Section, we expand three Cartesian displacements in terms
of a thickness coordinate using Legendre polynomials to simplify integration across the thick-
ness. To obtain the simplest higher-order theory, we adopc the same expansion order as pro-
posed by Hildebrand, Reissner, and Thomas:’ linear and parabolic distributions for the inplane
and transverse displacements, respectively. In contrast to Hildebrand et al.’s transverse dis-
placement expansion in which the leading term is the midplane displacement, the leading term
in the present expansion is Reissner’s® weighted-average displacement Here, as in Ref-
erence 9 the parabolic transverse displacement also involves two higher-order dispiacement
components. The particular advantage of the present expansion strategy is manifested in
finite clement approximations, where all kincmatic variables need not exceed C° continuity.

In the Concluding Summary and Finite Element Suitability Section, we shall remark further
on some important conscqucnces of the present continuity requirements on finite element
development.

In the Transverse Shear Field Consistency and Transverse Normai Field Consistcncy Sce-
tions, we delincate certain types of inconsistencies that arise in the thickness expansion for
the transverse shear strains and transverse normal stress, and propose a novel approach which
eradicates these inconsistencies in a rational manner. In the Governing Equations Scction, we
employ the principle of virtual work, which yields seven partial differential equaticns of
motion and exclusively Poisson edge boundary conditions. In the special case of static equilib-
rium, the theory decouples into one of fourth-order inplane stretching, sixth-order transverse
bending, and zero-order ‘transverse stretching. Whereas the first twc sets of equations corre-
spond to Reissncr’s thcory,z'“‘ the last set includes two higher-order transverse displacemcnts
of zero-order (i.e., they possess no spatial derivatives) and first-order derivatives ol the
weighted-average variables. The solution to a plate boundary value problem simply involves
solving the fourth-order inplane stretching and sixth-order transverse bending equations subject
to Poisson boundary conditions (as in Reissner’s theory), and then a straightforward cvaluation
of the two higher-order variables from the zero-order transverse strctching cquations.

One remarkable aspect of the theory is the particularly accurate representation of ali
transverse stresses.  Thus, the kinematically admissible transverse shear and normal stresses
are shown to satisly exactly the transverse cquilibrium equation of elasticitv, i.c.. thev arc also
statically admissible in the transverse cquilibrium sense.  The transverse shear stresses vary par-
abolically across the thickness while the transverse normal stress has a cubic distribution. Al
transverse stresses satisty the prescribed tractions at the top and bottom plite laces.

In the Assessment of Theory Scction, we examine the range of applicability of the theory
via an analytic solution for an infinitc isotropic plate undcr quasi-static sinusoidal normal pres-
sure and comparc results with the cxact clasticity solution and several other plate theories.

Finally, in the Concluding Summary and Finite Element Suitability Section, we discuss the
issucs concerning utilization of this variational displacement theory within the finite clement
framework, and suggest ways of formulating displaccment plate clements whose computational

efficicncy would be comparable to Reissner-Mindlin type elements.*!”




KINEMATIC ASSUMPTIONS

Consider an orthotropic, homogeneous elastic plate located in the three-dimensional Carte-
sian framework (x. v. z), where the x-y plane passes thiough the middle of the plate thickness
5 = 0, where § = zh €[-1, 1] is a dimensionless thickness coordinate, and 2h is the plate
thickness. The too (S7) and bottom (S) plate surfaces are taken free of shear tractions and
loaded by normal pressures

+ +
riz(s=l) = 0 (i=x,y), oz(;=L) = q (x,y,t) on S (1)

*lz(£=-l)= 0 (i=x,y), GZ(E=-1)= q (x,y,t) on S ()

where t denotes time. On a part, S,, of the cylindrical boundary surface S normal to the
midplane Sy, a traction vector is prescribed:
T=4{r, T, 1T}onS . 3
T= e, 1, 1, - (3)
We assume the plate principal material directions to be coincidents with the Cartesian
directions. and small displacements.

The simplest physically meaningtul approximations of displacement components allowing
for the transverse normal straining involve linear through-thickness expansions of the inplane
displacements (as in classical and refmed theories), and a parabolic approximation of the trans-
verse displacement. This level of approximation was first discussed by Hildebrand et al.’ For
convenience, we expand the Cartesian displacement components by means of Legendre polyno-
mials with u, having a special form:

ux(xry:z9t) = u(X’y’t) + hPl(g)ey(XJY)t)’
uy(x,y,Z.t) = v(x,y,t) + hPy(8)8 (x,y,t), (4

u (x,y,2,8) = wlx,y,t) + Py(wilx,y,t) + [Po(£)/5+P,(£) Jw,(x,v,t),

where 1 n , n
P (5) = —— 4 [(g5-1)" 1 /dg", 2 (1)=1, (&= z/h =[-1,1])
el n n
2" n! (3
(i.e., Py=1, P.=13, P.= (352-1)/2, P,= §(535%-3)/2)
are Legendre polynomials which, due to their orthogonality property,
1
_ 0 if m=n .
J PaPn 46 = { 2/(2m+l) if m=n (o1

prove convenicnt whenever thickness integrations are performed.

The expansion coefficients u, v, 6, 6, and w in Equatxon 4 are weighted average
kincmatic variables defined here in au,ordancn with Reissner.’




n h
i 1 -
u = 55 J uxdz, v = >h J uydz (7
h -h
h h
_ 3 ( . _ 3 ]
ex- 3h3 J Uya dz, 3y = 533 J u .z dz (8)
-h ~h
h
W = é_h' J UZ(PO- Pz) dz, { PU - P?. = 3(1 - 52)/2 }, (9)
-h

where u and v denote the midplane displacements along the x and y directions, respectively
and A, and 6, denote the normal rotations about the x and y axes, respectivcly. In Equa-
tion 4, w; and wa. are the higher-order components of a transverse displacement, u,, which
varies parabotically across the thickness. Note that w is the weighted average transverse dJis-
placement, in contrast to cther higher-order theories”!? employing the midplane displacement
variable. As will be seen, the special expansion for u, leads to exclusively Poisson-type edge
boundary conditions which are naturally obtained from the virtual work principle.

The plate strain-displacement relations are obtained in the usual manner by introducing
Equation 4 into the strain-displacement relations of three-dimensional elasticity:

€. =u.,., Y..= (u,,. +u.,.), (i,j=x,y,2). (10)

resulting in

£ =u, + h&EB , , ¢ = v, + hgo_,
X y'x y y X'y (11a)
YX:«' = U)' + Vi, + ht’(ey"' + BX’X) J
v = - 3__ o - 3 -2 -
Xz WYy z0 10 “Z,X) * Wik t3 Wiry
_ 3 . _ 3 s (llb)
Y/’Z = (szo 10 Wz’_\) + ;WI,J + 5 3 wz,y
=95 + =
Yxz,~ By T ¥ Tz, ‘BX + ¥y N
e, = (wy; + 3&w,)/h (11¢)

where a comma (,) denotes partial differentiation with respect to the spatial coordinates.  To
facilitate our subscquent discussion, we expressed the strains in Equations 11 directly in terms
ol the thickness coordinate g.




The complete Hooke's law for a homogeneous orthotropic plate may be cxpressed in
matrix form as:

o] =C g,
or
r 7] — 3T h
OK Cll Clo Cx3 0 0 0 Ex
12
g Csz Cia 0 0 0 € (12)
y Ve
C C
o, ) 113 0 0 €,
Tyz Cuu 0 0 sz
TXZ (Sm-) CSS 0 sz
I Txy ] B Ces 1 Yev J

TRANSVERSE SHEAR FIELD CONSISTENCY

From Equation 11b, it becomes evident that certain §-distribution inconsistencies are pres-
ent in the expansions of yy; and yy,. Here, both linear and quadratic terms in § involve only
wy and w;, which are contributed from u,. This is obviously the result of uj; (i = x. y)
being uniform across the thickness, whereas u,; vary parabolically. It is clear that to possess
a consistent kinematic form, each &-polynomial coefficient must include contributions from
both the inplane and transverse displacements, as implied in Equation 10.

A simple way of aszessing the effect of the aforementioned inconsistency is to examine
the nature of the transverse shear strains for a plate under the Kirchhoff constraint, i.e.,
7.~0 (1 = x, y) with the plate thickness diminishing to zero. From each shear strain, there
results three constraint equations:

3
[(V __l‘aw )9 Wi '12)X J -0

LN X

[t can be shown that (e.g.. see results in the Assessment of Theory Section):

W

—L = o(2n/L)"
1z,
(13ay
de .
1 = 0(2h/L)E,  (i=x,y)
{izn

i




where L denotes some characteristic plate span.  Accounting tor Equation 13a in Equu-
tion 13, it becomes apparent that. at least in the Kirchhotf regime, the resulting shear strains
are uniform ss the plate thickness:

=Y. > i= . 14)
le leﬁ 01 (1 X,Y) ( )
The direct implication of Equation 14 is that explicit conditions of zero shear tractions on the
plate faces cannot be satistied and. moreover, an ad hoc specification of a shear correction
factor is necessary to achieve agreement with the Kirchhotf theory for the class of thin plate
problems.”’

To eradicate this type of kinematic inconsistency while retaining a parabolic distribution
for u,, the oradients u,, (1 = x, y) should naturaliy be represented by a complete quadratic
nolynomial in &, thus 1mpl\1no cubic distributions for u, and uy. Approximations of this type
were employed by Lo et al. 5’(who extended Reissner's work'? in which inplane modes of
deformaticn were neglected) resulting in a complex twenty-second-order theory of limited prac-
tical usefulness.

In the present treatment. in order to resolve this difficulty while prcservinn the simpliciis
of Eguation 4, we propose 1o replace the uniformly distributed gradienats u,; (i = x. v;
(directly computed trom Equations 4 and 10) with the field-consistent gradients u*,, which
vary pacabolically across the thickness:

h

a k(x,y.t) Pk(ﬁ), (i=x,y). (1

[
[T
N
[}
I} 102

Hencetorth, the superior asterisk (*) will denote field-consistent gradient and resulting stress
quantities. The rclations between a;; and plate displacement variables are determined via two
tvpes of physically desirable constraint conditions:

The field-consisient transverse shear stresses are required to satisty tract.on-tree boundary con-
dittons at the top and bottom plate [aces:

0 (i=x,y). (10)

1}

Taking into account the constitutive relations. Equation 12, the above stress constraints give
rise to the vanishing conditions upon the shear straire:

2 "
Vi T lu, Puyyd =0 (i=x,y), (loas
(=1, -1)

Furthermore. the tield-consistent shear strains are required to be equivalent in the mean w
their ficld-inconsistent counterparts from Equation 11h:

6




n -
[ - - (17)
min vy, - Y., dz, (i=x,y),
-h
Equatiors 16a and 17 are solved for ayx (1 = x, yi k = 0, 1, 2), giving rise to the coasistent
shear strains:
= k“(Py - P.)(w + 3
Yz (P, 2 - y)
(1%
= k*(Py - Py)(w + 8
Yz k2(Py - P2)( x)

thn

in which k* = 5’6 emerged from this derivation and is coincident with Reissner’s shear
correction factor.

TRANSVERSE NORMAL FIELD CONSISTENCY

A stress tvpe of field inconsistency can be detected in the transverse equiiibrium eqguation
of the three-dimensional elasticity:

t + + =0 i i b 19
Tz x vz, %2 (ignoring the body force), {
Here. owing to the parabolic ¢-distribution of 7, (i = x, y). g, must be cubic in §: however,
assumptions, Equation 4, can only yield o which is linear. To overcome this discrepancy. we
replace u,, (computed directly from Equations 4 and 10) with the field-consistent gradient

u*,,. having a cubic $-distribution across the thickness:
3
e =a., = Y b (x,y,t) P (g (20
LT T ) B ent) B
k=0
vocre by are Jotermined ftom o the Dodowing constraint equuations:

he nomoegeneous boundary condittons on the through-thickaess gradient Of ransverse acrm

e RS e
SLTUhS COmreneni

3 ! .
g‘t ) = 93, .

res=0,-1)

NAS]

These conditions result trom Equation 19 when taking the top and bottom plate faces to be
free of shear tractions.

The ticld-consistent transverse normal strain s required to be equivalent in the mean to its
tieid-inconsistent counterpart ob Equation 1l

h
[ %

min . (=Z -z ) iz A
. 2 2 (I
-h

~J




From Equations 21 and 22. there results tour equations in terms of by vielding a cubic

transverse normal strain of the form:

i I - h* ! C :
W, ¥ KZ {({6P.~P3)w; - alc}gl“Ps‘*’ P.){(Cy,7 x+ Cy29 )13

with
k; = 472/85

In the remaining part ot the formulation we shall exclusively deal with the field-consistent
strains and stresses and, hence, we shall omit the superior asterisk which was previously used

to distinguish these quantities.
GOVERNING EQUATIONS

We derive the equations of motion together with the natural boundary conditions vin the
principle of virtval work incorporating the field-consistent strains and stresses:

€
re e
? Se e - 9 e + < T_ &v_ 4 1 3y ) dxdvdz
J <‘L JJJ (o et 9, %%, T Y, 08,7 xys\{xz <22 xz" Tuztlygl CFOVE
.V
S 2 Z 2 :_1)
- | 1 : : (
§ JJJ 1o (ux + uy + uz) dxdydz
VY
+ - - - -
- [ gt . - x + oy
JJ q ouzdxdy JI q 6uzdxdy J’J (Txé 1t Tyéuy Tzéuz) dsdz} dt= 0
s” s Sq

where s is a ccordinate tangent to the boundary of Sg, p is the mass density, and the
superior dot () denotes differentiation with respect to time.

Consistent with the parabolic distribution of the shear strains. Equaticn 1S, 1t

h
cdge shear traction s assumed (o varv parabolicaily as well, e, T. = (P, - P2y Tis). Intro-
ducing Equations 1la. 12 and 23 into Equation 24, and integrating with respect o z. we find

that certain integrals vanish identicallv
h h h
- - r 12330
' T ?2.dz = t2,/> - P.) dz = J I, (P;+14P,) dz = 0,

h -h




+ kaiw,x+ SBV) + Qvﬁéw,v + eax) - q, (8w + Sw,/k?) - gylw,

- m(udd + vav) - I (338 4+ 3 38 ) - m(w + wy/3)0w - T w dw,
m vy X X : 3

ST sk ey

+ AW + SWa d dt = C
Qz; W Qz« W } s

- { N 3u+N Sv+M 68 +M 58 + 0O Sw
) Xn vn xn y yn X zn
C

~
O

Performing appropriate variations and integration by parts vields:

t
3

r

J ([ qo- - N + [mv - N, - N ) v
. JJ [mu Nx’x ny,y] Su {mv 'y Xy’ X
L S

m

. N + . } 4 56
+ [ImBy Mx’x M, + Qx] 68y [Imex M, M Q1

Xy'y yy Xy x y X

S
+ {m(w + 5 w,) - Q,. - Qv,y‘qll dw

XX Ty
+ (D U+ N/ 5 (26)
3 w1 Ny h - Q.z] oW, -
(TG 26 - M /b= q./k3?] Sw, } dxdy
S N =S ) 3y =N =N ) Bv o4 (M - % 56 + (M - 4 .-
i) 3u y Nyn) v (wxn M) 3 + (Vv M) 33

L Xn Xn wn Xn % wn v X

Zn Z

- Q. -Q n ) Sw } ds

.
+ ? ¢N__ Su+ N Av+M 38 +M 88 +Q 6w } ds dt =0
{ “xn vn xn_y yn X zn
C

where C, and C, are parts of the boundary surrounding Sy, where the tractions and displace-
ments are prescribed, respectively; and where the inertial and stress resultants are detined as:

) . + - + -
o(l, z¢Y dz, q, =q -9, a; =9 + q,




h
(\1‘(, \Iy, ‘Q\W) = J (cx, d‘, *‘{y) dz,

h
(M, M, M =J(a,c,*)zdz,

X'y Xy X Xy
-h
h
= 2 - -~
Q> Qy) Jk (Po- P)(x,, 7. ) dz,
~h
h h
- - 2 -
NZ— j o, dz, MZ J o, kz (6P,- P;) dz,
-h -h
h h
B B) = [ G B ez G, f ) = [ 3, Tz az,
-h -h
h
an = J Tz dz,
-h

N =N+ N m N =N ¢+ Nm,
xn X Xy yn Xy y
M = + E -
<n Mxl nym, My‘n Mxy?' + Mym, an QXQ + Qym,

2 = cos(x,n), m = cos(y,n),
where nois an outward normal to the boundary of Sg.

Thus, the principle provides seven cquations of motion:

(5u): N, + N , = mu
<’x Txyv
(8v): N ., +# N, = mv
Xy'X yy
(38 ): M, +M , -Q =195
y <’ x xy’y X m’y
(38 ): M, +M, -Q =18
X xv’ X v'y v m X
-rp ‘e ..
(,W) Q‘(’X+Qj,, +C11 = 5 (5w+w2)
.. L _m .
(3w, ) -NZ/h Ga =3 W
10




: ; . m . - (28¢
(3wa): -.‘iz/h + q./%" =z (w + 2uw,) Y
tive stress boundary conditions on C,:
an—‘- an’ N:m= Ny“, Mxn= Mxn, My_n= . an = an» (29a)
and five displacement boundary conditions on Cy:
4u=u, v=uv, 9y= ay, 3.7 9 W =W (29h)
Note that Equation 29 represents Poisson-type boundary conditions.
Invoking Hooke's law for an orthotropic material, Equation 12, yields the plate stress-
displacement relations of the torm:
= A A " w .
Nx = Al;U,x + A”J’y + A, 51, (30a)
N = A, ,u + ALV + 5., 9
v A 22 ,,V ’ 3 (J()b;
Ney T A"G(u’y N v’z)’ {30!
M= D;;9 , +D,,0 , +D,, 22 5
" 1190y ey 13 5o (30d)
= 0 W3 .
My = Dy,8 vt Dzzex: + Dys 5 (30¢)
Mxy B D“’(gx’x ¥ 8y'y)’ . (301)
QX = Ggs(w, + ey); (30g)
Q, = Goulw, +8_), (30h)
_ = " : W, 504
NZ = A‘_3u,:( + A23V,/ + Aq, o (30
= 3 ~ W2 30;
A% Disi o ” DasZn ™ Das % 0]
TR A = (n)c.L, o (4,3=1,2,3),
1] J
i r c. ¢,
= (?2n3/3) iC - 3 23 ii=1.2
Dij (2h*/3) [(Jlj 35 C33 (1,_] 1, ),
(31)

D. = k? (2m)* ¢Cc, (i= 1,2),
ya 1

1; 3
Dyy = k2 (12h) Cys,
Agg= (2h) Cuy, Dgs= (2h?/3) C4s,
G.. = k? (2h) ¢y (i=4,5),

11

11




Special Case: Plate in Equilibrium

It is of significance to consider the case of a quasi-static lcading, leading to the vanishing
of the inertial terms, in which case Equations 28a through 28g become equilibrium equations.
Substituting Equations 30i and 30j into Equations 28f and 28g, respectively, results in the
solution for w; and wa:

s 1 N T
E' = - [ q.h - Aza‘l:x‘ f“-zaV’y :l (323)
A33
¥roo L b - 5 32b)
h Z [ 41 2 Dlaay’x Uzssx’y :l . (
Dis
Introducing Equation 32 into Equation 30 yields the expressions for Ny, Ny, My, and M,
N = Al,‘u, + Allv’ + _C.Ligz—h
X X y Cis
(33a)
N = Aj.u, + As.v, + C23q:h ‘1
y X y Cis
Mo Pulpt Pufe TG (33b)
2C h?
= + 1
My D128+ DaaB s ——2-13———5c33
where
C.C. ]
A, = (2n) |c,, - =,
1] 1] Cas
(34)
|’ c, S, ]
D.. = (2n*/3) jC, ., ~ /32— (i,3=1,27,
13 E_ 1] Css

When Equations 30c, 30t through 30h. and 33 are introduced into the equilibrium Eguations
28a through 28e. we obtain two decoupled sets of second-order partial differential equations
of equilibrium in terms of five weighted-average displacements:

[

th- tretching

C
13 - -
A“u’xx + Alzv’xy * Ass(u,yy+ v’xy) * Ca; (hqz)’x 0 (332)
C,
’ + » + » ’ + ’ =
A,u xy A,,v vy Age(u xy+ v xx) ——*—3-c33 (hq,) v 0
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Sixth-order berding

, 129 + Dgs (9 + 9 )—c(w+a>+2—c‘ﬁ-<qh2)=0
P Uyxx TRPUgxy TS x’xy Tylyy 55 g Ty S5Cy3 it ’x

2C.
1A Y” + f 4 - Z=23 Z
Dhav,xy+ Dﬁzax,yy Dss(ex,xx ey,xy) G““(w,yﬁ- Bx) + 3C3§qlh ),

GSS(W,XX+ ey’x) + Guu(wyyy+ ax’y) + q: = 0

with these equilibrium equations being subject to the natural boundary conditions. Equation 29.
L
It is quite remarkable that comparing these results to Reissner’s theoryz'4 (derived tor the
case of transverse bending of isotropic plates, i.e.. excluding the inplane deformations u and
v), we find that the equilibrinm Equation 35b, the corresponding boundary conditions. Equa-
tion 29, and the stress resultants, Equations 33b, and 30f through 30h match those of the
Reissner theory.

Computing stresses from the constitutive relations, Equation 12, we find a cubic trans-
verse normal stress

o, =1 {:qla(:a - g2) + ZqEI (36)

satisfying the prescribed normal pressure boundary conditions of Equations 1 and 2. From
Equation 12, we also determine the parabolic shear stresses of the form

_ 3k2 1 - 2 - - 1_ - 2
T 7 C..( £2)(w 9-) ih Qx(l £2)
. Ik 2 Co(t - 23w, =3 ) = 3——Q (1 - %) (D
vz 2 3550 Ty 4h Ty N

These kinematically admissible transverse stresses (i.e., obtained {rom constitutive equations)
can be shown to satisty the transverse equilibrium equation of elasticity, Equation 19. and.
hence. they are also statlcally admissible. The transverse stresses can also be seen coincident
with those of Reissner,“* who assumed the parabolic transverse shear stresses at the outset,
and then computed the transverse normal stress from Equation 19. As far as the inplane
stresses, the present 7, is identical to Reissner’s, however, o, and o, are cubic across the
thickness due to ¢, Equation 23, whereas in Reissner's theory they are linear.

Note that although in statics the equations of equilibrium are conveniently decoupled, in
dynamics, all seven equations of motion, Equation 28, are fully coupled. In the laiter case.
the solution procedure involves substitution of the stress resultants Equation 30 into Equa-
tion 28, and simultancously solving the resulting seven differential equations for the kinematic
unknowas.

: 13
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ASSESSMENT CF THEORY

To qualitati.elv evaluate the present plate theory, an analytic solution is obtained for the
problem of an infinite plate in equilibrium loaded at the top surtace by a sinusoidal pressure
of the form:

a7 - 3, sin(ex/L)  on ST (@ =0ons) (38)

where L is a hall wavelength of the loading pattern. This problem, having an exact elasticity
solution,*! has been widely employed as a benchmark in assessing plate bending theories.

Introducing Equation 38 into Equation 35, and seeking the unknown kinematic variables
in the form of sin(x/L) and cos(rx/L), a system of ordinary differential equations is obtained
and readily solved for the unknowns. The solutions are then simplified for the isotropic case

by replacing Cys from Equation 12 with the appropriate expressions in terms of the Lame’
constants. A and u, which result in the form:

vix) =8 (x) =0
X

qgLa
BrulAty)

[t}

ul(x)

cos(x/L)

3 - 2 (39)
?g:ﬁl‘hﬁ All + ZH§A+u§2/5)(ﬂh/L) ) cos(mx/L)

ey(x)

3qoL* _ A[L + 2u/X + (2/5)(wh/L)%(3 + 4u/A)]

w (x) S WOr™) ~— sin(wx/L)

Relations, Equation 32, are then invoked to determine the remaining kinematic variables:

w.(x) = qu(iizu) sin(7x/L)
. (40

() = - QeL? AF[1 4 2u/d - (2/5)(7h/L)?(1 - 85u/21M)] .

W, (%) TeoTs TETNIEEIN) sin(nx/L) .
The midplane transverse displacement is obtained from Equation 4:

uz(x,£=0) = wix) - 0.3 w.(x) (41
Hooke's law, Equation 12, then provides a means for obtaining stresses:

= .q_O_§ 2 _)\___ _3_ - 2 .

s ) = B8 [ 2o (26 | sinmi)

o,(x,8) = 32 (2-6)(+1)? sin(wx/L) (42)

- . Y o= 3q,L _ =2

P08 = e (Lo 87) cos(mx/L)
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Several observations can be made regarding thesc results:

(a) As expected, all weighted-average kinematic variables are identical to those of the
Reissner theoryv. One can. theretore, regard the expansion for u, as hierarchical. in which
Reissner’s displacement w is the leading term. and w; and w» are the higher-order terms allow-
ing a parabolic variation of u, across the plate thickness.

{b) In the axial stress component o, the first term (linear in ) is the Reissner (or classi-
cal) stress, while the second term is 2 higher-order contribution varying as P3(5). Note that
the leading stress, of the order (L/h), strongly dominates with the decreasing piate thickness.

(¢) As cstablished earlier, 7y and o, are the same as in the Reissner theory: they satisty
both constitutive cquations and the transverse equilibrium equation of elasticity.

In Figure 1, a rormalized value of the maximum midplane transverse displacement is plot-
ted versus the 2h/L ratio, where the results of five bending theories arc compared with the
exact solution. It is seen that the present and Essenburg's13 solutions agree quite closely,
and thev begin to deviate from the exact solution at 2h/L = 1. This is anticipated since the
two theories use the same order ot displacément approximations. the major difterence Hcirw
that in Esseaberg's beam theory, both stresses and displacements are assumed independent:
The eleven-variable theory of Lo et al.'® also appears to be accurate up to the same ratio
value. These esults indicate that when a characteristic length of loading (or plate span) is
of the order of the plate thickness, application of a higher- order theory 1s partlcular v war-
ranted. Similar observations have been made with regard to contact problems. as well as
those involving disturbances of geometry such as holes and cutouts, having the characteristic
length of the order of the plate thickness. Note that even though Reissner's weighted-
average displacement, w, is also shown in the comparison (the only transverse displacement
variable in Reissner theory), it does not represent the midplane displacement. In contrast, w
is the leading term in the expansion of the present theory, where the complete through-the-
thickness distribution is expressed by u, in Equation 4.

— Ixact
5 — Present
r . ---- Reissner
L - — Classicai
L -—. Esserpurs
PO — Lo, 2% al.
=z L
- -
re
= 2
=
)
N
~
-
= Q
[ fimust, 0=015/3)703)] \
-5 NS U N SIS SRS TSI NUTEE U\ U A S

0 1 2 3 4 5

Figure 1. Maximum midplane transverse dispiacement




In Figures 2 through 4. the present results for o, 7, and o, are presented for the case
of 2h/L = 0.5, and compared with the corresponding exact stresses. It is seen that the integ-
rity of all stresses is excellent, and particularly the transverse shear and normal stresses for
which other displacement theories produce rather inadequate strcsses violating stress boundary
conditions on the top and bottom plate faces (e.g., References 12 and 13).

1.0
}.
F - cxact

0.5 b Present
| (2h/L)=0.5
k

'% 0.0

}.

-0.5 |-

210 L | ) |
-4 -2 0 2 4

ax/ 9

Figure 2. Distribution of maximum ox
stress across thickness.

CONCLUDING SUMMARY AND FINITE ELEMENT SUITABILITY

A tenth-order displacement theorv for orthotropic. homogeneous elastic plates which
includes the inplane, transverse shear, and transverse normal deformations was Jeveloped.
The theorv embodies two morte kinematic variables than the Reissner and Mindlin shear-
deformable theories. A novel means for removing field inconsistency in the transverse shcar
strains was implemented and led to parabolic sirain distributions, satistving traction-tree bound-
arv conditions. In a similar fashion. the transverse normal strain and stress approximations
were raised to cubic thickness variations. The virtual work principle yielded seven equations
of motion together with exclusively Poisson-type boundary conditions. In the case of static
equilibrium. the theory revealed a close relationship to Reissner’s theory. An analytic solu-
tion to an infinite isotropic plate under a sinusoidal load revealed the high order of accuracy
attainable with this theory for all kinematic and stress quantities and. particularly, the trans-
verse stresses for which previous displacement theories yielded inaccurate results.
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Finally, the proposed displaccment theory appears to be ideally suited for finite element
approximation. The five weighted-average kinematic variables require only C°-continuity
across clement boundaries, having the highest spatial derivative in Equation 25b of order one.
The remaining two displacements, w, and w;, do not possess derivitives in the energy expres-
sions, thus permitting interelement discontinuous shape functions (i.e., c’! continuous). The
latter aspect allows the static condensation of degrees of freedom associated with w; and w,
at the element level. The implication is that computationally efficient elements can be devel-
oped by directly adopting successful approaches of shear-deformable elements.>!%*® Efforts
are currently underway to develop beam and plate elements based on this higher-order dis-
placement theory.
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